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An experimental investigation into the influence of Brownian motion on shear-induced
particle migration of monodisperse suspensions of micrometre-sized colloidal particles
is presented. The suspension is pumped through a 50 µm × 500 µm rectangular cross-
section glass channel. The experiments are characterized chiefly by the sample volume
fraction (φ = 0.1 − 0.4), and the flow rate expressed as the Péclet number (Pe= 10 −
400). For each experiment we measure the entrance length, which is the distance
from the inlet of the channel required for the concentration profile to develop to
its non-uniform steady state. The entrance length increases strongly with increasing
Pe for Pe � 100, in marked contrast to non-Brownian flows for which the entrance
length is flow-rate independent. For larger Pe, the entrance length reaches a constant
value which depends on the other experimental parameters. Additionally, the entrance
length decreases with increasing φ; this effect is strongest for low φ. Modelling of
the migration based on spatial variation of the normal stresses due to the particles
captures the primary features observed in the axial evolution over a range of Pe
and φ.

1. Introduction
The pressure-driven flow of concentrated suspensions through a channel leads

to shear-induced migration of the particle phase relative to the suspending fluid.
For flows through a narrow channel, an initially uniform suspension becomes less
concentrated near the walls and more concentrated near the centre of the channel.
This can lead to effects such as a modification of the velocity profile of the suspension
(Lyon & Leal 1998) and a change in the system pressure drop (Miller & Morris
2006). Shear-induced particle migration is relevant to applications where transfer of
a suspension from one vessel to another is required. Thus, it impacts industries such
as paper coating and food processing. Particle migration known as the Fahreus–
Lindqvist effect is also observed in blood flow (Fournier 1999).

Particle migration in suspension flows has been the subject of simulation and
modelling studies (Nott & Brady 1994; Morris & Brady 1998) as well as experimental
work (Koh, Hookham & Leal 1994; Lyon & Leal 1998). Particle migration has
been much studied beginning with Leighton & Acrivos (1987), but there has been
little work on suspensions of particles for which Brownian motion is significant.
The latter case will become increasingly important as the number of microfluidic
applications increases. For Brownian suspensions, thermally driven (Brownian)
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stresses on the particles can have a significant influence on the cross-stream migration,
as observed experimentally and in modelling by Frank et al. (2003). The gradient
diffusion resulting from Brownian motion has the effect of opposing the migration
caused by the shear-driven stresses. The influence of diffusion diminishes relative to
hydrodynamically driven migration as the flow rate is increased because shear-driven
stresses increase in magnitude, while thermally driven stresses remain unchanged.
In pressure-driven flow, the migration thus leads to larger concentrations in the
low-shear regions near the centre of the channel for larger flow rates. This flow-rate-
dependent extent of migration is a fundamental difference between Brownian and
non-Brownian suspensions. Frank et al. (2003) focused on the study of fully evolved
concentration profiles of a Brownian suspension flowing over a range of Pe. They
investigated a single monodisperse suspension at three different volume fractions
and assumed the experimental data had reached full development. In this paper, we
report measurements of the axial evolution of the particle concentration profile of
monodisperse suspensions of Brownian particles of two different sizes – 2.3 µm and
1.4 µm in diameter – pumped through a 50 µm × 500 µm cross-section microchannel,
providing results reliably to values as low as Pe ≈ 10. Because the steepest variation
with respect to Pe occurs at Pe= O(10)–O(100) for the concentrations studied,
this is crucial to understanding the evolution dependence on the flow rate. Our
studies demonstrate that in contrast with non-Brownian suspensions, flow rate has
a significant effect on the development of the concentration profile in a Brownian
suspension, and establishes that Pe determines the transition from strongly Brownian
to weakly Brownian behaviour. We also show experimentally and numerically a strong
dependence of the concentration development on volume fraction.

2. Experimental methods
Two sets of colloidal suspension are used. One is similar to that of Frank et al.

(2003) and consists of 2.3 µm-diameter slightly charged poly-methylmethacrylate hard
spheres suspended in a cyclohexylbromide/decalin mixture. The solvent matches the
density of the colloidal particles to prevent sedimentation, and also matches the index
of refraction to allow for visualization deep into the suspension. The other set is a
similar suspension of 1.4 µm-diameter spherical particles. To avoid aggregation due
to van der Waals attraction, the spheres are sterically stabilized by a thin layer of
poly-12-hydroxystearic acid (Antl et al. 1986). In addition, the particles are labelled
with fluorescent rhodamine dye to enable visualization with laser scanning confocal
microscopy.

The flow chamber of figure 1(b) is a glass channel 10 cm in axial length with a
50 µm × 500 µm rectangular cross-section (Friedrich and Dimmock). It is the same
type as that used in Frank et al. (2003), but double the length. However, the plumbing
connecting the syringe pump to the flow chamber has been substantially modified in
order to provide a clean entrance condition at the opening of the flow chamber: the
chamber is glued inside a 900 µm × 900 µm glass channel which is itself connected on
either side to a Teflon tube; the glue seals around the smaller flow chamber so that
the entire flow is directed through the 50 µm × 500 µm chamber. The larger square
channel allows visual access with a microscope to the entire flow chamber; most
importantly, to the chamber entrance and first few hundred micrometres.

Data is acquired using a fast confocal microscope (VT-Eye by VisiTech
International) to image hundreds of particles and resolve them even when they are
flowing at high speed. With a field of view of 55 × 55 µm2 when using a 100 ×, 1.35
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Figure 1. (a) Schematic of the experimental set-up at the entrance of the rectangular
cross-section flow chamber (capillary tube). The flow chamber is placed inside a larger
rectangular cross-section glass tube which is itself connected to the Teflon tube that is attached
to the syringe containing colloids. The arrangement makes the entrance of the flow chamber
optically accessible to the confocal microscope. (b) Flow chamber schematic showing relative
position of the microscope and the corresponding image slices. Note that length of capillary
tube is not shown to scale (it is 4000H ).

N.A. objective, the confocal microscope acquires images at 94 frames per second and
can thus resolve particles flowing at up to 5000 µms−1 – for these experiments, the
maximum particle speeds reach O(1000) µms−1.

Data is collected at various points along the flow axis (x-axis figure 1) of the
channel. The first point is at the entrance of the tube (x = 0): the microscope objective
is positioned to focus just inside the entrance and a series of two-dimensional slices
along the z-axis (figure 1) is taken through the depth of the rectangular-shaped
channel, i.e. from z = 0 to z = 50 µm. Figure 2 shows three such image slices taken
at different z positions where the flow speed ranges from nearly stationary up to
430 µms−1. From the stacks of images, the average local volume fraction along the
z-axis is extracted by counting the number of particles observed in each image slice.
This concentration profile, φ(x, z), is shown in figure 3, where data taken at different
values of x reveal the axial development of the profile.
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(a) (b) (c)

Figure 2. Two-dimensional slices, taken along the vertical axis (z), of 2.3 µm diameter particles
flowing through the channel at distance x/H =240 from the entrance. H =25 µm is half of the
channel width. The slices are at (a) z = 3 µm, (b) z = 13 µm, and (c) z = 28 µm, where z = 0 and
z = 25 are, respectively, the positions of one wall and the centre of the channel. The suspension
is of bulk solids volume fraction 0.35 and flows at Pe =295, corresponding to volume flow rate
of 7 nl s−1 and umax = 295 µm s−1. Particle migration is nearly fully developed and is visible by
eye: the slice closest to the wall (z = 3 µm, z/H = 0.1) clearly has fewer particles than the slice
closest to the centre (z = 28 µm, z/H = 1.1). The scale bar is 10 µm in length.
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Figure 3. Volume fraction profile at three different positions along the channel for a
suspension of 1.4 µm diameter particles at volume fraction φ = 0.26 and Pe = 129 (volume flow
rate 17 nl s−1). The volume fraction at the centre is clearly increasing with distance from the
entrance. �, profile at the entrance; �, profile at x/H =80; �, profile at x/H = 1360.

The bulk volume fraction φbulk of the suspension is measured with the flow turned
off, and then by counting and adding up the number of particles in each slice of a stack
of two-dimensional images. On average, the total number, N , of particles counted in
the stack of images is larger than the actual number of particles by a factor ∼ 2a/�z,
where �z is the separation between slices and a is the particle radius. Thus,

φbulk =
(N/(2a/�z)) 4

3
πa3

LxLyLz

, (2.1)

where Lx and Ly are the length and width of each image slice and Lz = nslices�z is the
height of the image stack. This method is inexact, as the number of two-dimensional
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images each particle appears in is not always 2a/�z, but we have verified that (2.1)
agrees to within 5 % with full three-dimensional methods (Dinsmore et al. 2001).
Although it would be desirable to always use three-dimensional methods to compute
the volume fraction, (2.1) has the advantage of being applicable to our rapidly flowing
samples where three-dimensional imaging is impossible. This method lets us compute
the local volume fraction in such samples. Because of local variability and overall un-
certainty of the diameters of the particles (∼2 %), we estimate the fractional uncertain-
ties in our measured volume fraction to be of the order of 10 % of the reported values.

In a non-colloidal suspension, it is only the strain undergone by the material which is
relevant to the development of the particle fraction and velocity fields (Nott & Brady
1994), but in a Brownian suspension the flow rate plays a role. The role of the flow
rate is captured through the Péclet number, which is the non-dimensional ratio of the
time for Brownian diffusion to move a particle its own size, a2/D0 = a2/(kT /6πη0a)
compared to γ̇ −1, the characteristic time for shear flow. Thus, the Péclet number is
defined as

Pe =
6πη0γ̇ a3

kT
, (2.2)

where η0 is the viscosity of the solvent, k is the Boltzmann constant, T is the
temperature, and D0 = kT /6πη0a is the diffusion coefficient of an isolated Brownian
particle of radius a in the solvent. In this study we define γ̇ = umax/H , where umax

is the maximum axial speed of the suspension and H = 25 µm is half the width of
the channel. There is some temporal variability in the pump system which is reflected
in measurements of umax ; however, the standard deviation was at most 5 %. From
the definition it is clear that the Péclet number can be changed in the experiment by
adjusting the flow rate, and also by using different sized particles. Thus, decreasing
the flow rate is a simple way of increasing the importance of Brownian motion.
However, there are experimental limitations: for the 2.3 µm-diameter particles, values
of Pe � 30 require flow rates that are at the low end of what the syringe pump can
reliably deliver. To access lower values of Pe, the 1.4 µm diameter particles are used:
the moderate reduction in particle diameter from 2.3 µm to 1.4 µm reduces Pe by a
factor of 4.4 for the same flow rates, thus allowing faster pumping speeds for small Pe.

For non-Brownian particles, changing the size of the particles (while keeping the
channel dimensions unchanged) affects the rate of development of the concentration
profile (Hampton et al. 1997) since interactions between larger particles result in
larger lateral displacements, relative to the channel size, that drive migration (Phillips
et al. 1991). Broadly, larger ratios of a/H result in shorter entrance lengths when the
volume fraction is kept constant.

In this investigation, the three adjustable parameters that characterize the flows
are the Péclet number, Pe, the volume fraction, φ, and the ratio a/H . Pe quantifies
the flow rate by comparing the maximum speed of the particles to Brownian motion,
(2.2); φ directly affects the frequency of particle interactions; the ratio of particle size
to channel width a/H is expected to influence how quickly particle migration occurs
as theory predicts the particle flux to scale as (a/H )2.

The flow rate is set by the pump. Locally, the velocity profile is measured by cross-
correlating successive pairs of images in the image stacks. The result, as expected and
previously observed (Lyon & Leal 1998; Frank et al. 2003), is a nearly parabolic profile
for axial velocity as a function of z (figure 4, open circles). At larger concentrations
(φ � 0.3), there is a significant flattening of the profile near the channel centre,
far downstream of the pump. In that case, the concentration in the lower shear
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Figure 4. Blunting of velocity for a suspension of 1.4 µm diameter particles at φ = 0.33 and
Pe= 60 (volume flow rate 8.5 nl s−1). The nearly parabolic curve formed by the � symbols
represents the velocity profile at x/H = 20 while the partially flattened profile formed by the �

symbols is the profile at x/H =1040. For these data, the concentration profile φ(x, z) reaches
95% of full development at x/H = 800.

regions near the centre becomes high enough (from particle migration) that significant
enhancement of viscosity occurs, and shearing motion of the dispersion is inhibited.
The result is observed as a blunting of the velocity profile as the sample evolves
(figure 4, solid squares).

3. Modelling the evolving flow
The flow in the channel has been analysed using the approach of Morris & Boulay

(1999) with the influence of Brownian motion on the particle normal stresses included
in the constitutive form proposed in Frank et al. (2003). Because the rapid variation
in conditions is across the channel (in the z-direction in the notation presented in
figure 1) while axial evolution is slow, a solution method which neglects the axial
variation in order to solve for the velocity at each axial position is used, and the
resulting particle stresses are used to predict the variation of the particle fraction with
position downstream. This ‘marching’ method is presented in detail in Miller & Morris
(2006). Specifically, the flow is described by the steady particle conservation equation,

〈ux〉∂φ

∂x
= −∇ · j⊥, (3.1)

in which the particle flux relative to the bulk motion is given by j⊥ =φ(〈u〉P − 〈u〉),
where 〈u〉P is the particle phase average velocity and 〈u〉 is the bulk suspension
average velocity, which here is approximated as purely x-directed as indicated by the
convective derivative on the left-hand side. The neglect of the non-zero 〈uz〉 (this bulk
cross-stream motion is required by the continuity equation because ∂ux/∂x �= 0 during
development) is considered in Miller & Morris (2006) and found to have negligible
effect on channel-flow development length. The particle flux can be obtained from a
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balance of drag and stress divergence from the particle-phase momentum balance

j⊥ = φ(〈u〉P − 〈u〉) =
2a2

9ηo

f (φ)∇ · ΣP , (3.2)

in which ΣP is the particle contribution to the stress, and f (φ) represents the
average mobility of the particles, and is taken as the sedimentation hindrance func-
tion with form f (φ) = (1 − φ)α; α = 2 is used based on a comparison of modelling
(Miller & Morris 2006) to experimental axially-evolving profiles in tube flow
(Hampton et al. 1997).

The particle mass and momentum conservation combined in the form (3.1–3.2)
simplify under the assumption that variations of Σ are primarily with z to

〈ux〉∂φ

∂x
= −2a2

9ηo

∂

∂z

(
f (φ)

∂ΣP,zz

∂z

)
. (3.3)

In order to obtain 〈ux〉, we use the axial momentum equation,

0 = −dP (x)

dx
+

∂

∂z

(
ηs(φ)

∂〈ux〉
∂z

)
, (3.4)

where dP (x)/dx is the bulk pressure gradient applied to the mixture. From the
solution we obtain γ̇ = |∂ux/∂z| which is required in order to determine the local Pe
and thus to specify the particle normal stress

ΣP,zz

−kT / 4
3
πa3

= a(φ) +
2 Pe

9

[
b−1 + c−1

]−1
, (3.5)

in the model presented in detail in § 3.2 of Frank et al. (2003). Here, a(φ) is the
dependence of the purely thermal (Brownian) stresses upon φ

a(φ) = 3φ

(
1 − φ

φmax

)−1

(3.6)

while b(φ, P e) and c(φ) represent the shear-dependent stresses,

b(φ, P e) = 0.7Pe φ

(
1 − φ

φmax

)−3

, c(φ) = 0.8ηn(φ), (3.7)

where ηn is the normal stress viscosity (Morris & Boulay 1999) and goes as ηn ∼ φ2(1−
φ/φmax )−2. We use φmax = 0.68. For large Pe, the stresses reduce to the term involving
c(φ) and are proportional to η0γ̇ (noting that kT × Pe ∼ η0γ̇ ). This simple constitutive
law for the normal stresses was developed to capture theoretical limits at low and high
Pe, as well as low and high φ, and to fit the Pe-dependence of normal stress differences
(largely from simulation: Phung, Brady & Bossis 1996) as well as particle pressure
(Jeffrey, Morris & Brady 1993), as discussed in Frank et al. (2003). Unfortunately,
sufficient volume of the colloidal dispersion was not available to perform rheometric
experiments on our materials.

Note that in this formulation, gradient diffusion, whether due to Brownian motion
or shear-induced, arises naturally, as a term proportional to ∇φ is obtained directly,

j =
2a2

9ηo

f (φ)

[
∂ΣP

∂φ
· ∇φ +

∂ΣP

∂γ̇
· ∇γ̇

]
,

and for the compressive normal stresses given by (3.5), ΣP provides the expected
negative sign in the leading term of the brackets on the right-hand side – i.e.
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Figure 5. Development of the inhomogeneous concentration profile for suspensions of 2.3 µm
diameter particles at two different volume fractions at Pe = 80 (volume flow rate 1.7 nl s−1).
Ep characterizes the flow development (see (4.1)). The distance x from the channel inlet is
non-dimensionalized by the half-width H of the channel. The dashed lines are fits using (4.2).

compressive, or dispersive, normal stresses act to dissipate gradients. The second term
in the brackets results from the shear-rate dependence and therefore may generate a
gradient in φ; this is the essential driving force for migration. This term would have
a more complicated form if the full dependence of ΣP on the velocity gradient tensor
(here expressed simply through γ̇ ) were used.

4. Results
The development length of the concentration profile is quantified following a

method similar to that defined by Hampton et al. (1997). A scalar measure of the
development is given by an evolution parameter Ep which for a local concentration
φ is given by

Ep(x) =
1

2H

∫ 2H

0

⏐⏐⏐⏐ φ(x, z)

〈φ(x, z)〉z

− φref (z)

〈φref (z)〉z

⏐⏐⏐⏐ dz, (4.1)

where φref (z) ≡ φ(x = 0, z) is the volume fraction profile at the inlet, 〈φ(x, z)〉z is the
local cross-sectional average volume fraction, and 2H is the height of the channel.
Thus, Ep(x) is zero for a suspension with uniform concentration over a cross-section,
and grows with x from the inlet as the initially uniform suspension becomes non-
uniform owing to particle migration.

Equation (4.1) hints that the cross-sectional average volume fraction 〈φ(x, z)〉z is
not constant – it decreases with x. Downstream, particle migration towards the faster-
flowing centre means that, to maintain the same total particle flux as the inlet where
φ(x = 0, z) is uniform, 〈φ(x, z)〉z must decrease.

As the concentration profile develops downstream, a plot of Ep versus distance
from the channel inlet shows that the concentration profile asymptotically approaches
a constant value (figure 5). The rate of growth of Ep with x is characterized by fitting
it to an exponential function (dashed line in figure 5) from which an entrance length
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Figure 6. Plots of entrance length as a function of Pe showing results for both experiment
(solid symbols) and computation (open symbols). (a) Results for 1.4 µm diameter particles.
(a) Experimental data: �, φ = 0.24; �, φ = 0.35. Model data: �, φ = 0.24; �, φ = 0.35.
Experimental data at φ = 0.31 is similar to that for φ = 0.35 and is not shown. (b) Results
for 2.3 µm diameter particles. Experimental data: �, φ = 0.24; �, φ = 0.28. Model data: �,
φ = 0.24; �, φ = 0.35. Experimental data at φ = 0.37 is similar to that for φ = 0.28 and is not
shown. The vertical bars represent the standard deviation of the range of measured entrance
lengths.

L is obtained. The exponential fit reduces experimental noise and is of the form

EFit
p (X) = α1

(
1 − e−X/L

)
+ α2, (4.2)

with X = x/H the dimensionless distance from the inlet; α1, α2 and L are fitting
parameters. We define parameter L to be the entrance length, which, in our
experiments, is usually O(100) half-channel widths. The evolution parameter Ep

typically reaches 95 % of its asymptotic value at distances O(1000) half-channel
widths downstream from the inlet. The α2 offset parameter is necessary since the
evolution parameter Ep is a difference of inherently noisy local volume fraction
measurements along the channel that cannot completely cancel out even if they are
taken at the same axial position. The fitting form of (4.2) is a slight variation of that
suggested by Hampton et al. (1997) where the function is taken as

EFit
p (X) = α1(1 − exp (α2X

0.8)) + α3, (4.3)

and the entrance length is defined as the distance from the channel inlet for which
the evolution parameter Ep reaches 95 % of its asymptotic value. Although the two
methods yield similar results, the entrance length definition of (4.2) is used here.

The entrance length is measured for several different values of Pe with the large
(2.3 µm diameter) and small (1.4 µm diameter) particles. All data points for the
plots of Ep vs. x/H (for example, figure 5) are obtained from performing at least
two experiments, and most data points are determined from three experiments;
furthermore, for each axial position, x/H , at least two stacks of images are taken per
experiment. The entrance lengths for different φ, as a function of Pe, are shown in
figure 6. The error bars represent the standard deviation of the range of measured
entrance lengths.
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As Pe increases, the entrance length L increases, eventually reaching an apparent
plateau for Pe � 100 (figure 6a). This is reasonable; for Pe � 100, Brownian motion
is most significant and thus has a strong influence on the behaviour. For large Pe,
Brownian motion is less important and the entrance length approaches a constant
value; at that point, it is entirely due to hydrodynamic effects which dominate the
thermal effects. The transition region, Pe ∼ 100, is approximately the same for both
particle sizes (figure 6) and different volume fractions, indicating that Pe captures the
relevant physics. (This is least obvious for the solid triangles in figure 6, corresponding
to the larger particles and a higher volume fraction; these data have large scatter
which prevents them from supporting this conclusion. We have also taken data at
φ = 0.37 which looks both qualitatively and quantitatively similar to the φ = 0.28
data.)

A second expected result is that the larger particles have shorter overall entrance
lengths (figure 6b). This agrees with previous experiments with non-Brownian particles,
which found shorter entrance lengths for larger a/R (the ratio of particle size and
cylindrical tube radius), (Hampton et al. 1997). In other words, the effect of particle
size is reflected in the concentration profile at each x: shear-induced particle migration
of large particles is more rapid than that of small ones since interparticle interactions
lead to bigger cross-stream displacements for larger particles (Phillips et al. 1991).
For our particle sizes, the relevant aspect ratios are a/H = 0.028 and a/H = 0.046.

The predictions from the model are qualitatively similar to the results of the
experiments (figure 6). There is strong entrance-length dependence on Pe at small Pe,
whereas for Pe = O(100), significantly weaker Pe influence is observed; the transition
from small to large Pe for the φ = 0.24 and 0.35 dispersions occurs from Pe = 10
to 100. Quantitatively, the agreement with experiment is roughly within 25 % for the
lower volume fraction φ = 0.24 data and within 50 % for the higher volume fraction
data. The model predicts that the entrance length continues to grow (albeit much
more slowly) over several decades in Pe.

A third result shown in figure 6(a, b) is the volume-fraction dependence: for a
fixed particle size and Pe, the higher volume-fraction data show a shorter entrance
length L. To further illustrate this, figure 7 shows a plot of experimental data and
model predictions for entrance-length dependence on bulk volume fraction. We show
results for 2.3 µm diameter particles at Pe = 150 (both experiment and model), as
well as additional model predictions at infinite Pe. The decreasing entrance length is
a result of the migration being due to particle interactions which become stronger at
elevated φ. It has been noted that migration should become nearly instantaneous as
φ → φmax (Morris & Brady 1998; Miller & Morris 2006) and experiments at extremely
concentrated conditions appear to confirm this for non-colloidal suspensions (Ovarlez,
Bertrand & Rodts 2006). Figure 7 also demonstrates that the entrance length is nearly
constant for Pe> 100, given the close agreement in the model data between Pe = 150
and Pe = ∞. Quantitatively, the Pe = 150 experimental data are close to the model
predictions and show a reduced entrance length with increasing φ, but with the
reductions becoming small as φ becomes large. This is noted in figure 6 where plots
of the two higher volume fractions have been omitted because of similar entrance
lengths.

5. Discussion
The key result of this study is that for pressure-driven flows of Brownian

suspensions, Brownian motion affects the evolution, and correspondingly the entrance
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Figure 7. Entrance length vs. φ. ×, obtained experimentally using 2.3 µm diameter colloidal
suspensions with Pe = 150 (volume flow rate 3.3 nl s−1); �, �, corresponding numerical analyses
with Pe = 150 and Pe = ∞, respectively. The vertical bars represent the standard deviation of
the range of measured entrance lengths.

length, of the cross-stream concentration profile. When Pe � 100, the entrance length
is found to have a significant dependence on the flow rate. This contrasts with non-
Brownian suspensions which do not have a dependence of entrance length on flow
rate – experiments by Hampton et al. (1997) showed that when O(1000) µm diameter
particles are pumped through a cylinder, the cross-stream concentration profiles are
unchanged when the pumping rates are changed, thereby precluding any entrance-
length dependence of the concentration profile on flow rate. As noted above, this
result is consistent with theories that predict that shear-induced particle migration
depends only on the total strain for low-Reynolds-number flows (Phillips et al. 1991).
The independence of entrance lengths on rate for non-Brownian suspensions is simply
understood as being a result of the linearity of the hydrodynamic equations, and the
fact there is no rate in the problem other than the imposed flow rate. Stated in other
words, a higher flow rate (larger 〈ux〉) leads to a migration scaling linearly as 〈ux〉,
but likewise the distance travelled downstream in a given time scales linearly with
this velocity, so there is no effect upon the entrance length, a theoretical prediction
confirmed by experiments (Hampton et al. 1997; Lyon & Leal 1998).

The dependence of the fully developed concentration profile on flow rate for
Brownian suspensions helps to explain the flow rate- or Pe-dependence of the entrance
length. Since the steady fully developed concentration profile results from a balance
between shear- and Brownian-driven stresses, Pe sets the extent of variation of the
fully developed profile, i.e. it fixes the maximum value, Ep(∞), of the evolution
parameter. However, the actual approach to Ep(∞) is to a good approximation still
determined by the total strain. This is illustrated by figure 8(a) where the evolution
parameters for experiments with Pe = 15 and Pe = 70 track relatively closely together
initially. For a significant distance from the inlet, the lower and higher Pe profiles
have approximately equal values of Ep (migration). Large differences appear only
as the lower Pe curve approaches its maximum Ep . Figure 8(b) shows that this is
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Figure 8. Experimental and model plots of evolution parameter vs. distance from the inlet.
(a) Experiment results for a suspension of 1.4 µm diameter particles at φ = 0.35, with Pe
as indicated. The horizontal dashed line is 95% of the maximum Ep for the Pe = 15 data.
The vertical bars represent the standard deviation of the range of parameter Ep for several
different experiments. (b) Model results for a large range of Pe. Ep has been normalized by
the asymptotic value at infinite Pe.
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Figure 9. Experimental data of the asymptotic value of evolution parameter vs. Pe for a
suspension of 1.4 µm diameter particles at φ = 0.24 (�) and φ = 0.28 (�).

precisely as predicted in the model solution; in this figure, Ep is shown normalized by
its asymptotic value at infinite Pe. We observe that where Ep(x) is far from Ep(∞), the
lower Pe flows have approximately the same evolution with x in their concentration
profile as the higher Pe flows. Additionally, figure 8(b) along with figure 9 show that
the asymptotic value of the evolution parameter, Ep(∞), indeed increases with Pe.
Consistent with observations of the entrance length, figure 9 shows that Ep(∞) grows
significantly with increasing Pe until Pe ≈ O(100), at which point Ep(∞) begins to
saturate. This is reflected in the computations of figure 8(b) which also show that
increases in Pe from Pe = 100 to Pe = 15 000 result in only a 20 % increase in Ep .
Thus, it appears that for Brownian suspensions the entrance length increases with Pe
because of the increase in total particle migration with flow rate.
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Figure 10. Comparison between experimental (�) and model (�) volume fraction profiles at
three intervals along the channel. The suspension is of 1.4 µm diameter particles at volume
fraction φ = 0.26 and Pe = 129 (volume flow rate 17 nl s−1). (a) Near the entrance at x/H = 80,
the model is in good agreement with the experiment. (b) Farther downstream at x/H = 160,
differences in the extent of particle migration begin to appear, and (c) at x/H = 1360, the
profiles are significantly different. The profiles reach 95% of full development at x/H = 1990
for the experiment and x/H = 2250 for the model.

While the model captures the essential results of the experiment, quantitative
differences are found in the detailed φ(x, z). As noted in Frank et al. (2003), the model
does not reproduce exactly the predicted concentration profiles at full development.
Figure 10 shows good agreement between the experimental data and the model
at short distances from the inlet. However, farther along the channel the model
overestimates the particle migration. Nevertheless, the characteristic development
lengths of the model and experiment are comparable. One factor which was noted
(Frank et al. 2003) to contribute to the lack of agreement in the profiles is the
application of the rheological model at arbitrarily small scales, when the rheology of
the material should properly be employed only in volumes containing several particles.
Here, we have used the approach of Miller & Morris (2006), who addressed this issue
for non-colloidal suspensions by using a non-local stress contribution in which the
stress depends upon the shear rate averaged about the point of interest in a finite
volume. Agreement with the Hampton et al. (1997) results for φ(r) in tube flow of
concentrated suspensions, is improved when the shear rate is averaged over a volume
of the order of the size of the particle, but we note that the appropriate form to use
for a colloidal suspension remains uncertain. A second factor which may contribute is
the use at low solids fraction of a model designed for highly concentrated suspensions,
where normal stress is comparable to shear stress (φ � 0.35, Morris & Boulay 1999). A
third factor could be the charge on the particles. The modelling assumes the particles
are Brownian hard spheres, but the charge causes an electrostatic repulsion between
the particles that may be sufficiently strong to account for some of the deviation
between the measurements and the model. Intuitively, it might be expected that the
effect of the repulsion would be to suppress migration as particles in the centre
become more concentrated, hence the good agreement at short distances down the
channel, but poor agreement farther downstream.
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Migration theories, such as those of Nott & Brady (1994) and Phillips et al. (1991),
predict an axial profile development length inversely proportional to (a/R)2, where
a is the particle radius and R is the radius of the cylindrical tube that they flow
through. However, experimental data by Hampton et al. (1997) shows a range of
values for the exponent, increasing linearly from 0.4 for φ = 0.2 to 1.8 for φ = 0.45.
They speculate that this may be due to discrete particle-size effects – their experiments
use particles for which a/R is as large as 0.0625, probably above the size for which
the continuum approach is strictly valid (say 0.02). For this study, the ratios are
a/H = 0.046 and a/H = 0.028. Determining the exponent in our experiments by
plotting L× (a/H )n vs. Pe and adjusting n until the curves of similar volume fractions
collapse onto one another, values n ≈ 1 for φ = 0.24 and n ≈ 2 for φ = 0.35 are
obtained. That is, even for our experiments where discrete particle-size effects are
smaller than those of Hampton et al. (1997), there is a wide range of values of the
exponent. The exponents are slightly closer to that of the migration theories, but still
show a strong φ dependence. The scaling for the model (§ 3) is closer to the theoretical
value of n = 2, although it is not constant either. For the suspensions with solids
fraction φ = 0.24, the plots for ratios a/H = 0.028 and a/H = 0.046 collapse onto
each other when n = 2.05, whereas for the φ = 0.35 suspensions, the plots collapse
when n = 2.2. It would be instructive to repeat this work with particles that are
small enough to be below the a/H = 0.02 continuum limit and determine whether
the exponent still has a volume-fraction dependence.

6. Conclusions
We find significant dependence of entrance length on Péclet number for flows

with Pe � 100. The effect of Brownian motion on shear-induced particle migration
is to reduce the axial distance required for a Brownian suspension to reach its fully
developed inhomogeneous concentration profile. It does so by suppressing the total
migration. As Pe reaches O(100), the Brownian effect becomes weak compared to the
shear-dependent stresses that cause migration and the entrance length correspondingly
becomes a weaker function of Pe.

The modelling based upon a two-fluid analysis, in which particle migration results
from spatial variation of the suspension normal stresses, successfully predicts the
observed trends with Pe and φ using the constitutive modelling proposed in Frank
et al. (2003). In particular, the pronounced increase in entrance length as Pe grows to
O(100) in the moderately concentrated suspensions agrees with experiment. The model
predictions are in complete agreement with the somewhat surprising experimental
observation that the evolution, as characterized by Ep , follows a similar trend in its
growth with distance downstream for all Pe in the early stages (small axial distance
x/H ) with levelling at lower ultimate values, Ep(∞), and hence at smaller x/H for
smaller Pe. The work thus provides firm guidance for prediction of the evolution
scales in pressure-driven flows of colloidal dispersions.

This material is based upon work supported by the National Science Foundation
under Grant 0239109.
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